From totzke@news.cs.TU-Magdeburg.DE Tue Jun  7 17:29:32 EDT 1994
Article: 3215 of comp.ai.genetic
Xref: glinda.oz.cs.cmu.edu comp.ai.genetic:3215
Path: honeydew.srv.cs.cmu.edu!fs7.ece.cmu.edu!europa.eng.gtefsd.com!howland.reston.ans.net!EU.net!Germany.EU.net!netmbx.de!zib-berlin.de!news.cs.tu-magdeburg.de!news.cs.tu-magdeburg.de!not-for-mail
From: totzke@news.cs.TU-Magdeburg.DE (Holger Totzke)
Newsgroups: comp.ai.genetic
Subject: ParaTSP - a parallel GA and SA to solve TSP's
Date: 6 Jun 1994 16:07:05 +0200
Organization: Univ. Magdeburg, Germany
Lines: 216
Message-ID: <2svai9$9o5@fichte.cs.tu-magdeburg.de>
NNTP-Posting-Host: fichte.cs.tu-magdeburg.de
Keywords: TSP, GA, SA, parallel computer



Hi,

I wrote a software package to compute Travelling Salesman Problems (TSP)
with genetic algorithms (GA) and with simulated annealing (SA). The source
code in C is available by email. The program "ParaTSP" uses source code from
Baeck's "GeneSyS v1.0". ParaTSP is running under UNIX. A parallel extension
for the massiv parallel computer Parsytec GC is available (operating system
is PARIX). The C-source are about 20000 lines of code.

Now the help text for ParaTSP (GA):
------
ParaTSP 1.0 is running ...
ParaTSP 1.0			(c) 1994 by Holger Totzke

Usage: paratsp [Options]
GA-specific options:
	-A  tspfi		# TSP input file
	-B  I,G,R,P,L,N,W,B	# breeder selection scheme
	    I    		# inverse roulette wheel
	    G    		# gauss
	    R    		# random
	    P    		# proportional
	    L    		# linear ranking
	    N    		# inverse linear ranking
	    W    		# Whitley's index calculation
	    B    		# Boltzmann
	-C  xprob		# crossover probability
	-D  mudim		# mutation step dimension
	-E  N,M,_		# elitist scheme
	    N    		# normal
	    M    		# mutate
	    _    		# no elitism
	-F  L,E,_		# fitness scaling type
	    L    		# linear
	    E    		# exponential
	    _    		# no fitness scaling
	-G  gapsz		# generation gap size
	-H  elhld		# elite number (hold)
	-I  R,T,N,C,F,W,A	# population initialization scheme
	    R    		# random
	    T    		# tour from input file
	    N    		# nearest neighbour
	    C    		# cheapest insertion
	    F    		# farthest insertion
	    W    		# random scheme without input (R,N,C,F)
	    A    		# random scheme (R,T,N,C,F)
	-L  R,W,F		# elite selection scheme (sacrifice select)
	    R    		# random
	    W    		# weakest
	    F    		# first weaker
	-M  xy   		# mutation scheme
	    x={C,A,_}		# possible settings:
	    y={M,S,I,R}		#
	    C    		# constant mutation rates
	    A    		# adapted mutation rates
	    _    		# no mutation
	    M    		# move
	    S    		# swap
	    I    		# invert
	    R    		# random (M,S,I)
	-N  norno		# normalization number (town index)
	-O  C,N,T		# other GA-specific options
	    C    		# crossover creates two childs
	    N    		# normalization of tour
	    T    		# filter twins
	-P  popsz		# population size
	-Q  crowf		# crowding factor
	-R  R,C  		# replace scheme (dispersal)
	    R    		# random
	    C    		# crowding
	-S  R,P  		# mates selection mechanism
	    R    		# random
	    P    		# positional index
	-T  L,T,Q,A,1,2,3,_	# local tour optimization scheme
	    L    		# Lin's 2-opt
	    T    		# 2-opt
	    Q    		# 2-quick
	    A    		# sequence of 2-opt and or-opt
	    1    		# or-opt(1)
	    2    		# or-opt(2)
	    3    		# or-opt(3)
	    _    		# no local tour optimization
	-W  wdwsz		# window size for scaling
	-X  E,I,P,O,C,U,N,H,F,	# crossover scheme
	    R,_  		#
	    E    		# edge recombination (ERX)
	    I    		# interval partially matched (IPMX)
	    P    		# partially matched (PMX)
	    O    		# order (OX)
	    C    		# cycle (CX)
	    U    		# uniform order based (UOBX)
	    N    		# nearest neighbour
	    H    		# cheapest insertion
	    F    		# farthest insertion
	    R    		# random (E,P,O,C,U,N,H,F)
	    _    		# no crossover
	-Y  mprob		# mutation probability
	-ZA fitpa		# fitness scaling parameter A
	-ZB fitpb		# fitness scaling parameter B
	-ZC fitpc		# fitness scaling parameter C
	-ZD fitpd		# fitness scaling parameter D
	-ZI chlen		# cooling generations for boltzmann selection
	-ZL lwidx		# lower index for breeder selection
	-ZN etamx		# maximum expected value for linear ranking
	-ZT tmpct		# temperature control for boltzmann selection
	-ZU upidx		# upper index for breeder selection
	-ZX xpoin		# number of crossover intervals in IPMX

Parallel options:
	-pi comin		# communication interval in generations
	-pm i,t,p,n		# parallel model
	    i    		# island
	    t    		# token
	    p    		# pollen
	    n    		# neighbour
	-pn indno		# number of individuals to change
	-pp popno		# number of populations
	-pr nproc		# number of processors
	-ps spdir		# spread direction of pollen
	-pt r,p,g,o,h,t		# type of communication topology
	    r    		# ring
	    p    		# pipe
	    g    		# 2d-grid
	    o    		# 2d-torus
	    h    		# hypercube
	    t    		# tree
	-px lwwin		# lower limit to wind force
	-py upwin		# upper limit to wind force

General options:
	-a  tourf		# tour input file
	-b  tdfrq		# tour dump interval in generations
	-c       		# save tour for XTSP
	-d       		# show results on display
	-e  noexp		# total number of experiments
	-f  dfreq		# dump interval in generations
	-g  nogen		# total number of generations
	-h       		# this help information
	-?       		#
	-i  infil		# input file
	-k       		# no output files
	-m  minqu		# minimal tour length (quality) to abort
	-n  savno		# number of best individuals to save
	-o  a,l,n,p,s,t,v	# additional general options
	-q       		# create directory name and exit
	-r  m,p  		# random number generator type
	    m    		# Marsaglia's random number generator
	    p    		# rand() from programming language C
	-s  seed 		# seed for random number generator
	-t  notrl		# total number of trials
	-u  popno		# population no. to show on display
	-v  intvl		# number of trials between data collections
	-w       		# without report
	-x  suffx		# file suffix
	-y  maxsp		# number of generations wo. evaluations

Additional options (following the general option -o):
	 a       		# evaluate all individuals
	 l       		# dump last generation
	 n       		# simplified termination
	 p       		# dump population
	 s       		# trace schema history
	 t       		# trace ParaTSP run
	 v       		# collect tour values (much data !)

------

And the help text for SATSP:
______
SATSP is running ...
ParaTSP 1.0			(c) 1994 by Holger Totzke

Usage: satsp [Options]
Options:
	-A tspfi		# TSP input file
	-F tmpfa		# temperature control factor
	-J jmax 		# number of steps per temperature levels
	-N nmax 		# number of temperature levels
	-S A,T  		# algorithm
	   A    		# simulated annealing
	   T    		# threshold accepting
	-T tmpst		# start temperature
	-d      		# show results on display
	-e noexp		# total number of experiments
	-h      		# this help information
	-?      		#
	-i comin		# communication interval in temperature steps
	-m minqu		# minimal tour length (quality) to abort
	-p nproc		# number of processors
	-s seed 		# seed for random number generator
	-t r,p,g,o,h,t		# type of communication topology
	   r    		# ring
	   p    		# pipe
	   g    		# 2d-grid
	   o    		# 2d-torus
	   h    		# hypercube
	   t    		# tree

______

Sorry for my bad english...

Holger.

-- 
+-----------------------------------------------------------------------------+
| Holger Totzke        //     Uni      \\                                     |
| Moskauer Str. 17    //   Magdeburg    \\                                    |
| 39218 Schoenebeck  // Computer Science \\                                   |
| Germany           //                    \\ privat voice: +49-3928/66334     |
|-----------------------------------------------------------------------------|
| e-mail: totzke@sunpool.cs.TU-Magdeburg.DE                                   |
+-----------------------------------------------------------------------------+



Article 3238 of comp.ai.genetic:
Xref: glinda.oz.cs.cmu.edu comp.ai.genetic:3238
Path: honeydew.srv.cs.cmu.edu!das-news.harvard.edu!noc.near.net!news2.near.net!MathWorks.Com!europa.eng.gtefsd.com!howland.reston.ans.net!spool.mu.edu!umn.edu!zib-berlin.de!news.cs.tu-magdeburg.de!news.cs.tu-magdeburg.de!not-for-mail
From: totzke@news.cs.TU-Magdeburg.DE (Holger Totzke)
Newsgroups: comp.ai.genetic
Subject: ParaTSP - upload on FTP servers
Date: 10 Jun 1994 13:32:54 +0200
Organization: Univ. Magdeburg, Germany
Lines: 29
Message-ID: <2t9j16$14s@fichte.cs.tu-magdeburg.de>
NNTP-Posting-Host: fichte.cs.tu-magdeburg.de
Keywords: GA, SA, ParaTSP, parallel computing, TSP



Hi,

i have upload ParaTSP on various FTP server:

  * ftp.cs.tu-magdeburg.de:/in.coming/ParaTSP/*   [141.44.21.200]
  * ftp.uni-paderborn.de:/incoming/unix/ParaTSP/* [131.234.2.32]
  * ftp.mi.uni-koeln.de:/pub/incoming/ParaTSP/*   [134.95.229.226]
  * alife.santafe.edu:/pub/incoming/paratsp.*   [192.12.12.99] -> not readable

ParaTSP is a parallel GA & SA for solving TSP.
It is based on GeneSyS 1.0 from Baeck.

Comments and problems to me via e-mail.

Holger.

-- 
+-----------------------------------------------------------------------------+
| Holger Totzke        //     Uni      \\                                     |
| Moskauer Str. 17    //   Magdeburg    \\                                    |
| 39218 Schoenebeck  // Computer Science \\                                   |
| Germany           //                    \\ privat voice: +49-3928/66334     |
|-----------------------------------------------------------------------------|
| e-mail: totzke@sunpool.cs.TU-Magdeburg.DE                                   |
+-----------------------------------------------------------------------------+