On Documenting Databases: Optimal Information

1. Title of Database: Indicate the central topic of the domain
2. Sources:
   (a) Original owners of database (name/phone/snail address/email address)
   (b) Donor of database (name/phone/snail address/email address)
   (c) Date received (databases may change over time without name change!)
3. Past Usage:
   (a) Complete reference of article where it was described/used
   (b) Indication of what attribute(s) were being predicted 
   (b) Indication of study's results (i.e. Is it a good domain to use?)
4. Relevant Information Paragraph:
   -- whatever is not covered elsewhere that should be stated
5. Number of Instances
6. Number of Attributes 
   -- if this varies (is "non-standard"), give details
      -- for example, suppose that only some (not all) features are present
         for each instance: then carefully note how the missing values should
         be interpreted (i.e., as unknown information, don't cares, negatives,
         or whatever)
7. For Each Attribute: (please give both acronym and full name if both exist)
   (a) Type of domain:
        (i) either numeric or non-numeric
       (ii) if numeric, note whether continuous, integers only, etcetera
      (iii) if non-numeric, label as "linear", "structured", or "nominal"
       Be careful to distinguish numeric values from symbolic-valued attributes
       that happen to be encoded numerically!
   (b) Statistics for numeric domains:
       -- Min, Max, Mean, SD, Correlation with predicted attribute
   (c) Statistics for non-numeric domains
       -- where possible, list all attribute values that occur
8. Missing Attribute Values: how many per each attribute?
9. Class Distribution: number of instances per class

Please put the documentation before the data.
Please leave the data in the following format:
 (a) only one instance per line 
 (b) place commas between attribute values
 (c) missing values should be denoted by "?"
 (d) no spaces should occur between attribute values
 (e) please state any exceptions to these format instructions

Example Documentation: --------------------------------------------------

1. Title: Relative CPU Performance Data 

2. Source Information
   -- Creators: Phillip Ein-Dor and Jacob Feldmesser
     -- Ein-Dor: Faculty of Management; Tel Aviv University; Ramat-Aviv; 
        Tel Aviv, 69978; Israel
   -- Donor: David W. Aha (aha@ics.uci.edu) (714) 856-8779   
   -- Date: October, 1987
 
3. Past Usage:
    1. Ein-Dor and Feldmesser (CACM 4/87, pp 308-317)
       -- Results: 
          -- linear regression prediction of relative cpu performance
          -- Recorded 34% average deviation from actual values 
    2. Kibler,D. & Aha,D. (1988).  Instance-Based Prediction of
       Real-Valued Attributes.  In Proceedings of the CSCSI (Canadian
       AI) Conference.
       -- Results:
          -- instance-based prediction of relative cpu performance
          -- similar results; no transformations required
    - Predicted attribute: cpu relative performance (numeric)

4. Relevant Information:
   -- The estimated relative performance values were estimated by the authors
      using a linear regression method.  See their article (pp 308-313) for
      more details on how the relative performance values were set.

5. Number of Instances: 209 

6. Number of Attributes: 10 (6 predictive attributes, 2 non-predictive, 
                             1 goal field, and the linear regression's guess)

7. Attribute Information:
   1. vendor name: 30 
      (adviser, amdahl,apollo, basf, bti, burroughs, c.r.d, cambex, cdc, dec, 
       dg, formation, four-phase, gould, honeywell, hp, ibm, ipl, magnuson, 
       microdata, nas, ncr, nixdorf, perkin-elmer, prime, siemens, sperry, 
       sratus, wang)
   2. Model Name: many unique symbols
   3. MYCT: machine cycle time in nanoseconds (integer)
   4. MMIN: minimum main memory in kilobytes (integer)
   5. MMAX: maximum main memory in kilobytes (integer)
   6. CACH: cache memory in kilobytes (integer)
   7. CHMIN: minimum channels in units (integer)
   8. CHMAX: maximum channels in units (integer)
   9. PRP: published relative performance (integer)
  10. ERP: estimated relative performance from the original article (integer)

8. Missing Attribute Values: None

9. Class Distribution: the class value (PRP) is continuously valued.
   PRP Value Range:   Number of Instances in Range:
   0-20               31
   21-100             121
   101-200            27
   201-300            13
   301-400            7
   401-500            4
   501-600            2
   above 600          4

Summary Statistics:
	   Min  Max   Mean    SD      PRP Correlation
   MCYT:   17   1500  203.8   260.3   -0.3071
   MMIN:   64   32000 2868.0  3878.7   0.7949
   MMAX:   64   64000 11796.1 11726.6  0.8630
   CACH:   0    256   25.2    40.6     0.6626
   CHMIN:  0    52    4.7     6.8      0.6089
   CHMAX:  0    176   18.2    26.0     0.6052
   PRP:    6    1150  105.6   160.8    1.0000
   ERP:   15    1238  99.3    154.8    0.9665