
Structural Normalization for Classical

Natural Deduction

William Lovas
(wlovas@cs.cmu.edu)

Karl Crary
(crary@cs.cmu.edu)

December 22, 2006

Abstract

We present a judgemental formulation of natural deduction for classical
logic, similar in spirit to Wadler’s dual calculus, but founded on the logical
judgements A true and A false; proof-by-contradiction, which puts these
two judgements in opposition, lies at the heart of our system. We then
show directly a normalization property for this system by a purely syntactic
structural induction.

1 Introduction

The Curry-Howard correspondence allows us to discover new type systems
by exploring logics and conversely to discover new logics by examining
type systems. Typically these enterprises are carried out in the setting of
natural deduction [9], a method of describing logics that defines what it
means to be a proof of a proposition. Natural deduction proofs of certain
propositions correspond cleanly and elegantly to expressions of certain
types in a type system.

Gentzen proved natural deduction sound by appealing to the sequent
calculus: first, a proof in the natural deduction system can be translated into
a deduction in the sequent calculus using a “cut” rule; then, instances of the
“cut” rule in a sequent calculus deduction can be systematically propagated
toward the leaves, and eventually, removed entirely; finally, such “cut”-free
sequent deductions can be reflected back into irreducible natural deduction
proofs.

To this day, many consistency proofs for natural deduction systems are
carried out by translating to a sequent calculus that admits cut. But if one
is only interested in the natural deduction, this detour through the sequent
calculus is unwelcome—one would prefer to do one’s consistency proof
directly in the natural deduction system. Furthermore, it has long been
known that cut elimination for the sequent calculus may be proven by a
simple nested structural induction [21, 22], and similar structural proofs
have been explored for natural deduction systems with proof terms [3, 13].

1



The present work shows a direct proof of classical logic’s consistency as
a weak normalization property of the proof terms of classical natural de-
duction. Not only is this proof direct, but also it is mathematically simple,
proceeding by straightforward lexicographic structural induction on types
and terms. It relies only on syntactic notions; no semantic models, logical
relations, or saturated sets are needed, in contrast to most work on strong
normalization [7]. Furthermore, the proof exposes the computational con-
tent of consistency as a (non-deterministic) normalization procedure for
classical proofs.

In what follows, we introduce a natural deduction system for classical
logic and discuss some of its properties (Section 2), presenting its semantics
in the judgemental style of Martin-Löf [14] along with several examples of
classical theorems; we then characterize the normal forms of our calculus
and outline a weak normalization theorem, proving a few interesting cases
along the way (Section 3); finally, we demonstrate that our method may be
straightforwardly extended to classical linear logic (Section 4).

2 Classical natural deduction

2.1 Syntax and judgements

The following system for classical natural deduction is based on Martin-
Löf’s separation of judgements from propositions [14, 23, 1]. It is similar
in spirit to Wadler’s dual calculus [24, 25], but founded on the judgements
A true and A false and their interplay rather than on the classical sequent
calculus. The presentation shown here is due to Nanevski [18]; in what
follows, we will refer to the system as JCL, for Judgemental Classical Logic.

The syntax of JCL is shown in Figure 1. First, we have the propositions
A, with all the usual classical connectives: truth, conjunction, falsehood,
disjunction, and negation. (The omission of implication is intentional, since
it may be defined in classical logic in terms of negation and either disjunc-
tion or conjunction [24].) Then we have expressions e, which represent
proofs of a proposition’s truth, and continuations k, which represent proofs
of a proposition’s falsehood. Contradictions c are the combination of a con-
tinuation with an expression. Computationally, a contradiction represents
the state of a computation; the notation k / e is meant to suggest a value e
being passed to a continuation k, as per the computational interpretation of
classical proofs [12, 17, 16, 10].

We will use the word “term” to refer generically to any expression,
continuation, or contradiction.

Judgementally, the expressions e will be proof terms for deductions of
the judgement A true and the continuations k will be proof terms for de-
ductions of the judgement A false. In general, these categorical judgements
must be extended to hypothetical judgements. In doing so, it is convenient,
but inessential, to separate hypotheses about truth (in contexts Γ) from hy-
potheses about falsehood (in contexts∆), leading to judgements of the form
Γ;∆ ` e : A true and Γ;∆ ` k : A false. (Note that we abbreviate true hypoth-

esis x : A true as simply x:A and false hypotheses u : A false as u:A.) Finally,
we have a judgement representing a proof of contradiction, Γ;∆ ` c : #; this

2



A ::= 1 | A1 × A2 | 0 | A1 + A2 | ¬A propositions

e ::= x | 〈〉 | 〈e1, e2〉 | inl e | inr e | not k | u:A. c expressions

k ::= u | k ◦ fst | k ◦ snd | [] | [k1, k2] | not e | x:A. c continuations

c ::= k / e contradictions

Γ ::= · | Γ, x:A true contexts

∆ ::= · | ∆, u:A false contexts

Figure 1: Syntax of JCL’s types, proofs, and contexts

states that the true hypotheses found in Γ are in contradiction with the false
hypotheses found in ∆, and the term c witnesses this contradiction. Typing
rules defining these judgements appear in Figure 2.

When k / e is a contradiction, with k : A false and e : A true, we call A
the mediating type of the contradiction.

The expressions are essentially familiar introduction forms: a proof of
conjunction is a pair of proofs 〈e1, e2〉, and a proof of disjunction is a proof
tagged with inl or inr. A proof of negation is a continuation reified as an
expression, an essential concept in defining functions and implication.

The continuations roughly represent elimination forms: refutations of
conjunction are continuations that perform the first or second projection
and then pass the result to another continuation; refutations of disjunction
represent case analysis as a pair of continuations [k1, k2]. A refutation of
negation represents an expression suspended as a continuation.

Both expressions and continuations have an unusual binding syntac-

tic form representing proof-by-contradiction. The expression u:A. c corre-
sponds roughly to a call/cc construct in a functional language with control
effects: it grabs the current continuation, binds it to u, and continues with
another contradiction, inside of which a value e may be sent to u by placing
the two in contradiction with u / e — a kind of goto with an argument. The
continuation x:A. c is simply its dual; we might whimsically refer to it as
call/ce.

All three of the hypothetical judgements admit substitution principles
that allow proofs or refutations to take the place of truth or falsehood
hypotheses.

Theorem 1 (Substitution). Let J be any of e′ : B true, k′ : B false, or c : #.
Then

1. If (Γ, x:A);∆ ` J and Γ;∆ ` e : A true, then Γ;∆ ` {e/x} J.

2. If Γ; (∆, u:A) ` J and Γ;∆ ` k : A false, then Γ;∆ ` {k/u} J.

Proof. By simultaneous induction on the hypothetical judgement with a
distinguished hypothesis. �

3



Γ;∆ ` e : A true

(Γ, x:A);∆ ` x : A true
(hypT)

Γ; (∆, u:A) ` c : #

Γ;∆ ` u:A. c : A true
(#E-T)

Γ;∆ ` 〈〉 : 1 true
(1T)

Γ;∆ ` e1 : A1 true Γ;∆ ` e2 : A2 true

Γ;∆ ` 〈e1, e2〉 : A1 × A2 true
(×T)

Γ;∆ ` e : A1 true

Γ;∆ ` inl e : A1 + A2 true
(+T1)

Γ;∆ ` e : A2 true

Γ;∆ ` inr e : A1 + A2 true
(+T2)

Γ;∆ ` k : A false

Γ;∆ ` not k : ¬A true
(¬T)

Γ;∆ ` k : A false

Γ; (∆, u:A) ` u : A false
(hypF)

(Γ, x:A);∆ ` c : #

Γ;∆ ` x:A. c : A false
(#E-F)

Γ;∆ ` k : A1 false

Γ;∆ ` k ◦ fst : A1 × A2 false
(×F1)

Γ;∆ ` k : A2 false

Γ;∆ ` k ◦ snd : A1 × A2 false
(×F2)

Γ;∆ ` [] : 0 false
(0F)

Γ;∆ ` k1 : A1 false Γ;∆ ` k2 : A2 false

Γ;∆ ` [k1, k2] : A1 + A2 false
(+F)

Γ;∆ ` e : A true

Γ;∆ ` not e : ¬A false
(¬F)

Γ;∆ ` c : #

Γ;∆ ` k : A false Γ;∆ ` e : A true

Γ;∆ ` k / e : #
(#I)

Figure 2: Judgemental classical natural deduction

4



Substitutions {e/x} J and {k/u} J are of the standard capture-avoiding
variety.

Finally, we have a notion of proof reduction, characterized by three
judgements: e −→ e′, k −→ k′, and c −→ c′. Rules definining these transition
relations appear in Figure 3.

As usual, reduction preserves well-typedness of terms.

Theorem 2 (Subject reduction).

1. If Γ;∆ ` e : A true and e −→ e′, then Γ;∆ ` e′ : A true.

2. If Γ;∆ ` k : A false and k −→ k′, then Γ;∆ ` k′ : A false.

3. If Γ;∆ ` c : # and c −→ c′, then Γ;∆ ` c′ : #.

Proof. By simultaneous induction on the transition relations, with appeals
to Substitution. �

The interesting reduction rules, corresponding to β-reductions, are all
in the c −→ c′ judgement, which specifies how proofs and refutations of the
same proposition interact with each other to form smaller contradictions.
A projection continuation, when passed a pair, projects the appropriate
component and passes it along to the remainder of the continuation; dually,
a case analysis, when passed a tagged expression, passes the expression
along to the appropriate continuation.

A call/cc expression can always step when passed to any continuation:
the continuation is substituted for the bound variable in the body contra-
diction. Well-typedness of the result follows from the substitution principle
for falsehood assumptions. Similarly, call/ce continuations can always step
when passed any expression.

The remainder of the transition rules are compatibility cases that allow
contradiction reduction to occur anywhere inside a term.

2.2 Traditional elimination forms

As a type system, JCL is interesting in that it lacks elimination forms in its
expression language. Instead, it has true introductions and false introduc-
tions, with all the action happening when they come together. The usual
elimination forms are all definable, though, using proof-by-contradiction.
To simulate the rules

Γ;∆ ` e : A × B true

Γ;∆ ` π1 e : A true
(×E1)

Γ;∆ ` e : A × B true

Γ;∆ ` π2 e : B true
(×E2)

Γ;∆ ` e : A + B true (Γ, x:A);∆ ` e1 : C true (Γ, y:B);∆ ` e2 : C true

Γ;∆ ` case(e, x:A. e1, y:B. e2) : C true
(+E),

it suffices to make the following definitions:

π1 e : A
def
= u:A.u ◦ fst / e

π2 e : B
def
= u:B.u ◦ snd / e

case(e, x:A. e1, y:B. e2) : C
def
= u:C. [x:A.u / e1, y:B.u / e2] / e,

5



e −→ e′

c −→ c′

u:A. c −→ u:A. c′

e1 −→ e′1

〈e1, e2〉 −→ 〈e
′
1, e2〉

e2 −→ e′2

〈e1, e2〉 −→ 〈e1, e
′
2〉

e −→ e′

inl e −→ inl e′
e −→ e′

inr e −→ inr e′
k −→ k′

not k −→ not k′

k −→ k′

c −→ c′

x:A. c −→ x:A. c′
k −→ k′

k ◦ fst −→ k′ ◦ fst

k −→ k′

k ◦ snd −→ k′ ◦ snd

k1 −→ k′1

[k1, k2] −→ [k′1, k2]

k2 −→ k′2

[k1, k2] −→ [k1, k
′
2]

e −→ e′

not e −→ not e′

c −→ c′

k −→ k′

k / e −→ k′ / e

e −→ e′

k / e −→ k / e′

k / u:A. c −→ {k/u} c x:A. c / e −→ {e/x} c

k ◦ fst / 〈e1, e2〉 −→ k / e1 k ◦ snd / 〈e1, e2〉 −→ k / e2

[k1, k2] / inl e −→ k1 / e [k1, k2] / inr e −→ k2 / e

not e / not k −→ k / e

Figure 3: Proof reduction

6



where in each case, u is a fresh continuation variable. It is easy to verify
that, for any continuations k of the appropriate type:

k / π1 〈e1, e2〉 −→
∗ k / e1

k / π2 〈e1, e2〉 −→
∗ k / e2

k / case(inl e, x:A. e1, y:B. e2) −→∗ k / {e/x} e1

k / case(inr e, x:A. e1, y:B. e2) −→∗ k / {e/y} e2

We may also define a nullary case statement, the intuitionistic elimina-
tion form for falsehood, usually called abort:

Γ;∆ ` e : 0 true

Γ;∆ ` abort e : A true
(0E)

abort e : A
def
= u:A. [] / e

2.3 Examples

JCL can be used to produce proof terms of classical theorems with compu-
tational content in the form of reduction behavior.

The law of the excluded middle, commonly held as the essential differ-
ence between classical and intuitionistic logic, may be represented as the
following natural deduction proof:

u:A + ¬A.u / inr (not (x:A.u / inl x))

This exhibits the well-known “time-travelling” behavior characteristic of
classical proofs [24, 15]: the proof initially asserts ¬A by constructing an
A-accepting continuation, but if it’s ever called out by being passed a proof
of A, it travels back to the original context and asserts A, using the given
proof.

It is convenient to define implication, A1 → A2: as usual, its (true)
“introduction” form is a λ-abstraction λx:A1. e. Its (false) “elimination”
form is an argument expression and a continuation, written “e; k”:

(Γ, x:A1);∆ ` e : A2 true

Γ;∆ ` λx:A1. e : A1 → A2 true
(→T)

Γ;∆ ` e : A1 true Γ;∆ ` k : A2 false

Γ;∆ ` e; k : A1 → A2 false
(→F)

Logically, the rule →F simply says that an implication is false if its an-
tecedent is true and its conclusion is false—ordinary classical truth-table
reasoning. Computationally, the continuation e; k, when passed a func-
tion, applies the function to the argument e and passes the result to the
continuation k.

7



Classical implication can be defined in two different ways that are dual
to one another [24]. For example, we might take:

A→ B
def
= ¬(A × ¬B)

(λx:A. e) : A→ B
def
= not (z:A × ¬B. (x:A. (not e) ◦ snd / z) ◦ fst / z)

(e; k) : A→ B
def
= not 〈e, not k〉

Using implication, we can prove Peirce’s law, ((A→ B)→ A)→ A:

λ f :(A→ B)→ A.u:A. (gu; u) / f where gu = λx:A. v:B. u / x

Computationally, this is precisely the expression-oriented version of the
call/cc primitive. Given a function f , it grabs the current continuation u
and calls f with a representation of u as a function, gu. If f returns normally,
its return value is passed to u, but if f invokes gu with some value, that
value will be passed to u instead.

If we wanted our system to be particularly austere, we could eliminate
disjunction from JCL altogether and let it be a defined notion:

A + B
def
= ¬(¬A × ¬B)

(inl e) : A + B
def
= not (not e ◦ fst)

(inr e) : A + B
def
= not (not e ◦ snd)

[k1, k2] : A + B
def
= not 〈not k1, not k2〉

Of course, by duality, we could do the same in the reverse direction,defining
conjunction in terms of disjunction.

3 Weak normalization

We begin by characterizing the normal forms of JCL. Recall that the only
place β-reductions happen is in contradictions, so we focus on charac-
terizing irreducible contradictions. Two important facts are immediately
evident:

• k / u:A. c and x:A. c / e can both take a step, and

• if k / e is well-typed and k and e are both introduction forms—as
opposed to variables or binders—then k / e can take a step.

Therefore, for a contradiction to be irreducible, both halves must not intro
forms, and neither half may be a binding form. This motivates the idea of
a neutral term: a neutral term is either a variable or an introduction form,
and one can appear on either side of a normal contradiction, provided the
other side is just a variable.

Although the binding forms u:A. c and x:A. c may not appear on either
side of a normal contradiction, it is clear that any such term should be
regarded as normal itself provided its sub-contradiction is normal. Further
inspection reveals that these binding forms can even appear deep inside a

8



normal term, as long as they’re not put in contradiction with a term of the
opposite sort. Thus, subterms of neutral terms may be merely normal.

A complete grammar describing normal and neutral terms appears be-
low. Neutral terms are written as bold terms, and normal terms are written
as bold, capitalized terms.

e ::= x | 〈〉 | 〈E1,E2〉 | inl E | inr E | not K neutral expressions

E ::= e | u:A.C normal expressions

k ::= u | K ◦ fst | K ◦ snd | [] | [K1,K2] | not E neutral continuations

K ::= k | x:A.C normal continuations

C ::= u / e | k / x normal contradictions

With this definition in hand, we can state a normalization theorem for
well-typed terms:

Theorem 3 (Normalization).

1. If Γ;∆ ` e : A true, then e −→∗ E.

2. If Γ;∆ ` k : A false, then k −→∗ K.

3. If Γ;∆ ` c : #, then c −→∗ C.

where −→∗ is the usual reflexive, transitive closure of −→.

Proof. Straightforward induction on the typing derivation of the term. The
interesting case is the contradiction case.

Case: Γ;∆ ` k / e : #

k / e −→∗ K / e By induction on k.
−→∗ K / E By induction on e.
−→∗ C By Lemma (below).

�

Thus, normalization is an immediate corollary of a lemma regarding
the normalization of contradictions where both sides are normal. This
main lemma is the heart of the normalization proof. Its proof relies on
the related fact that neutral-neutral contradictions also normalize, as well
as a series of “cut” lemmas stating that substitutions of normalizing terms
into normalizing terms are themselves normalizing. In all, there are 20
substitution cases, since there are four sorts of things we may substitute (e,
E, k, and K) and five sorts of things we may substitute into (e, E, k, K, and
C). In fact, these seemingly auxiliary facts refer back to the main lemma, so
in order to prove it, we must strengthen its statement to include them all;
the complete lemma is stated in Figure 4.

Lemma 4 (Natural deduction cut elimination).
If Γ;∆ ` K : A false and Γ;∆ ` E : A true, then K / E −→∗ C.

Proof. We prove, simultaneously, the list of clauses given in Figure 4, by
lexicographic induction on three things:

1. The active type. In normalization clauses, this is the mediating type of
the contradiction; in “cut” clauses, this is the type of the distinguished
free variable.

9



1. Neutral/neutral normalization. Neutral continuations against neutral expressions
normalize.
If Γ;∆ ` k : A false and Γ;∆ ` e : A true, then k / e −→∗ C.

2. Neutral/* cuts. Substitutions of neutral terms (i) into neutral terms neutralize, (ii)
into normal terms normalize.
If Γ;∆ ` e : A true, then

(a) if (Γ, x:A);∆ ` e′ : B true, then {e/x} e′ −→∗ e′′.

(b) if (Γ, x:A);∆ ` k : B true, then {e/x}k −→∗ k′.

(c) if (Γ, x:A);∆ ` E : B true, then {e/x}E −→∗ E′.

(d) if (Γ, x:A);∆ ` K : B true, then {e/x}K −→∗ K′.

(e) if (Γ, x:A);∆ ` C : B true, then {e/x}C −→∗ C′.

If Γ;∆ ` k : A false, then

(f) if Γ; (∆,u:A) ` e : B true, then {k/u}e −→∗ e′.

(g) if Γ; (∆,u:A) ` k′ : B true, then {k/u}k′ −→∗ k′′.

(h) if Γ; (∆,u:A) ` E : B true, then {k/u}E −→∗ E′.

(i) if Γ; (∆,u:A) ` K : B true, then {k/u}K −→∗ K′.

(j) if Γ; (∆,u:A) ` C : B true, then {k/u}C −→∗ C′.

3. Neutral-normal and normal-neutral normalization. Normal terms against neu-
tral terms normalize.

(a) If Γ;∆ ` k : A false and Γ;∆ ` E : A true, then k / E −→∗ C.

(b) If Γ;∆ ` K : A false and Γ;∆ ` e : A true, then K / e −→∗ C.

4. Normal/* cuts. Substitutions of normal terms (i) into neutral terms normalize, if
of the same sort, neutralize if of different sorts, (ii) into normal terms normalize.
If Γ;∆ ` E : A true, then

(a) if (Γ, x:A);∆ ` e : B true, then {E/x} e −→∗ E′.

(b) if (Γ, x:A);∆ ` k : B true, then {E/x}k −→∗ k′.

(c) if (Γ, x:A);∆ ` E′ : B true, then {E/x}E′ −→∗ E′′.

(d) if (Γ, x:A);∆ ` K : B true, then {E/x}K −→∗ K′.

(e) if (Γ, x:A);∆ ` C : B true, then {E/x}C −→∗ C′.

If Γ;∆ ` K : A false, then

(f) if Γ; (∆,u:A) ` e : B true, then {K/u} e −→∗ e′.

(g) if Γ; (∆,u:A) ` k : B true, then {K/u}k −→∗ K′.

(h) if Γ; (∆,u:A) ` E : B true, then {K/u}E −→∗ E′.

(i) if Γ; (∆,u:A) ` K′ : B true, then {K/u}K′ −→∗ K′′.

(j) if Γ; (∆,u:A) ` C : B true, then {K/u}C −→∗ C′.

5. Normal-normal normalization. Normal continuations against normal expressions
normalize.
If Γ;∆ ` K : A false and Γ;∆ ` E : A true, then K / E −→∗ C.

Figure 4: Complete statement of Lemma 4.

10



2. The clause number. Any clause may use an earlier clause at the same
active type, where the clause order from earliest to latest is

(a) Neutral-neutral normalization

(b) Neutral/* cuts

(c) Normal-neutral normalization and neutral-normal normaliza-
tion

(d) Normal/* cuts

(e) Normal-normal normalization.

3. The expression being substituted into. Any cut clause may refer to
cut clauses of the same number at the same active type provided that
they only do so at a smaller expression.

Although there are many cases to prove in this simultaneous induction,
most of them are completely straightforward. Since the proof relies only on
lexicographic structural induction, it is quite amenable to formalization in
a logical framework, and in fact the authors have formalized it in machine-
checkable form in the Twelf logical framework.

In the remainder of this section, we show a few of the interesting cases
of the proof.

Clause 1 (Neutral-neutral normalization).
If Γ;∆ ` k : A false and Γ;∆ ` e : A true, then k / e −→∗ C.

We proceed by case analysis on k, e, and A.

Case: k = u

u / e −→∗ u / e By reflexivity.

Case: e = x

k / x −→∗ k / x By reflexivity.

Case: A = A1 × A2

k = K1 ◦ fst or k = K2 ◦ snd, and e = 〈E1,E2〉. By inversion.

Subcase: k = K1 ◦ fst

K1 ◦ fst / 〈E1,E2〉 −→ K1 / E1 By rule.
−→∗ C By induction at A1.

Subcase: k = K2 ◦ snd

K2 ◦ snd / 〈E1,E2〉 −→ K2 / E2 By rule.
−→∗ C By induction at A2.

Other cases: Similar.

Clause 5 (Normal-normal normalization).
If Γ;∆ ` K : A false and Γ;∆ ` E : A true, then K / E −→∗ C.

We proceed by case analysis on K and E.

11



Case: K = k and E = e

k / e −→∗ C By induction at same type, Clause 1.

Case: K = x:A.C

x:A.C / E −→ {E/x}C By rule.
−→∗ C′ By induction at same type, Clause 4.

Case: E = u:A.C

Similar.

The cut lemmas are straightforward, except for the cases of cutting a
normal term into a normal contradiction; we prove one such case in its
entirety below.

Clause 4 (Subclause (4e): Normal-e/normal-c cut).
If Γ;∆ ` E : A true and (Γ, x:A);∆ ` C : #, then {E/x}C −→∗ C′.

We proceed by case analysis on C.

Case: C = k / x

{E/x}C = {E/x}k / E By the definition of substitution.
−→∗ k′ / E By induction at smaller term.
−→∗ C′ By induction at same type, Clause 3.

Note: Crucially, the active type remains the same in the last inductive
appeal: since the variable we’re substituting for, x, appears on one
side of the contradiction, the contradiction’s mediating type is the
type of x. Furthermore, it is essential that k′ be neutral and not
merely normal—we may not appeal to normal-normal normalization,
Clause 5, at the same active type.

Case: C = k / y, where y , x

{E/x}C = {E/x}k / y By the definition of substitution.
−→∗ k′ / y By induction at smaller term.
= C′

Note: Here, the active type may change: we know nothing about
the type of y. That doesn’t matter, though, since k / y is already
normal—we need not appeal to any inductive hypothesis.

Case: C = u / e

{E/x}C = u / {E/x} e By the definition of substitution.
−→∗ u / E′ By induction at smaller term.

Note: As above, the active type may change: we know nothing about
the type of u. Therefore, we may not appeal inductively to Clause 3,
neutral-normal normalization, even though its clause number is ear-
lier. Instead, we proceed by cases on E′.

12



A ::= 1 | A1 ⊗ A2 | 0 | A1 ⊕ A2 | > | A1 & A2 | ⊥ | A1 M A2 | ¬A

e ::= x | 〈〈〉〉 | 〈〈e1, e2〉〉 | inl e | inr e | 〈〉 | 〈e1, e2〉 | ~�. c | ~u1:A1, u2:A2�. c

| not k | u:A. c

k ::= u | 〈〈〉〉. c | 〈〈x1:A1, x2:A2〉〉. c | [] | [k1, k2] | k ◦ fst | k ◦ snd | ~� | ~k1, k2�

| not e | x:A. c

c ::= k / e

Γ ::= · | Γ, x:A

∆ ::= · | ∆, u:A

Figure 5: Syntax of JCLL’c types, proofs, and contexts

Subcase: E′ = e′

u / E′ = u / e′ = C′.

Subcase: E′ = v:B.C′′

u / E′ = u / v:B.C′′ −→ {u/v}C′′ = C′

In the second subcase above, it is evident that substituting a variable
for a variable inside a normal contradiction yields another normal
contradiction. �

Corollary 5 (Consistency). There is no c such that ·; · ` c : #.

Proof. By contradiction. Suppose there were such a c. Then it would have a
normal form c −→∗ C. By Subject Reduction, ·; · ` C : #. But since a normal
contradiction must have a variable on one side, no normal contradiction
can be well-typed without hypotheses. �

4 Extension to classical linear logic

Here, we briefly sketch how our result may be extended to a dual-style
natural deduction for classical linear logic we call Judgemental Classical
Linear Logic, or JCLL.

4.1 Classical linear proof terms

JCLL has similar judgemental foundations to JILL [1], but with the sym-
metric classical duality of JCL. To JCL, it adds types and proof terms for
multiplicative conjunction and disjunction. Figure 5 outlines its syntax.

13



Hypotheses are now interpreted as linear resources and may only ap-
pear linearly; the typing rules guarantee this.

x:A; · ` x : A true ·; u:A ` u : A false

Hypotheses come equipped with linear substitution principles.

Theorem 6 (Linear substitution). Let J be any of e′ : B true, k′ : B false, or
c : #. Then

1. If (Γ′, x:A);∆′ ` J and Γ;∆ ` e : A true, then (Γ,Γ′); (∆,∆′) ` {e/x} J.

2. If Γ′; (∆′, u:A) ` J and Γ;∆ ` k : A false, then (Γ,Γ′); (∆,∆′) ` {k/u} J.

The usual additive conjunction and disjunction are now A & B and
A⊕B, with units > and 0, respectively. Their proof terms, typing rules, and
operational behavior are the same as those for A × B, A + B, 1, and 0 in the
unrestricted calculus.

A proof of multiplicative conjunction A ⊗ B is represented by a pair
of proofs 〈〈e1, e2〉〉 that do not share resources. A refutation of A ⊗ B is
represented by a contradiction under truth assumptions for its conjuncts.

Γ1;∆1 ` e1 : A true Γ2;∆2 ` e2 : B true

(Γ1,Γ2); (∆1,∆2) ` 〈〈e1, e2〉〉 : A ⊗ B true
(⊗T)

(Γ, x:A, y:B);∆ ` c : #

Γ;∆ ` 〈〈x:A, y:B〉〉. c : A ⊗ B false
(⊗F)

The operational interpretation of the interaction of a proof and a refutation
of A ⊗ B substitutes the proofs for the hypotheses to yield a new contradic-
tion.

〈〈x:A, y:B〉〉. c / 〈〈e1, e2〉〉 −→ {e1, e2/x, y} c

This corresponds closely to the behavior of the usual intuitionistic “let”
elimination form.

Proofs and refutations of multiplicative disjunction A M B are precisely
symmetric: a refutation is a pair of refutations ~k1, k2� and a proof is a

contradiction under assumptions of falsehood ~u1:A,u2:B�. c.
Multiplicative units 1 and ⊥ are nullary versions of A ⊗ B and A M B.

·; · ` 〈〈〉〉 : 1 true
(1T)

Γ;∆ ` c : #

Γ;∆ ` 〈〈〉〉. c : 1 false
(1F)

〈〈〉〉. c / 〈〈〉〉 −→ c

Γ;∆ ` c : #

Γ;∆ ` ~�. c : 0 true
(⊥T)

·; · ` ~� : 0 false
(⊥F)

~� / ~�. c −→ c

As expected, in the linear calculus, a contradiction’s two halves may not
share resources.

Γ1;∆1 ` k : A false Γ2;∆2 ` e : A true

(Γ1,Γ2); (∆1,∆2) ` k / e : #
(#I)

14



The remainder of the typing and reduction rules are similar, and we
omit them.

The linear calculus enjoys subject reduction.

Theorem 7 (Linear subject reduction).

1. If Γ;∆ ` e : A true and e −→ e′, then Γ;∆ ` e′ : A true.

2. If Γ;∆ ` k : A false and k −→ k′, then Γ;∆ ` k′ : A false.

3. If Γ;∆ ` c : # and c −→ c′, then Γ;∆ ` c′ : #.

4.2 Classical linear normalization

It is straightforward to define normal and neutral forms for this calculus
as in the unrestricted calculus, and the “cut elimination” proof is precisely
analogous. Linearity does not interfere with most cases; when it does, it
does so by ruling the case out (for example, the linear proof has no cases
for {e/x} u or {e/x} 〈〈〉〉).

e ::= x | 〈〈〉〉 | 〈〈E1,E2〉〉 | inl E | inr E

| 〈〉 | 〈E1,E2〉 | ~�. c | ~u1:A1,u2:A2�.C | not K

E ::= e | u:A.C

k ::= u | 〈〈〉〉.C | 〈〈x1:A1, x2:A2〉〉.C | [] | [K1,K2]

| K ◦ fst | K ◦ snd | ~� | ~K1,K2� | not E

K ::= k | x:A.C

C ::= u / e | k / x

Theorem 8 (Linear weak normalization).

1. If Γ;∆ ` e : A true, then e −→∗ E.

2. If Γ;∆ ` k : A false, then k −→∗ K.

3. If Γ;∆ ` c : #, then c −→∗ C.

5 A note on commuting conversions

Structural normalization proofs for intuitionistic calculi with closed-scope
eliminations like case require commuting conversions1 to restore the sub-
formula property [13]. Arbitrary instances of case analysis can violate the
invariant that eliminations reduce the size of the active type. By reduc-
ing the type at which a case occurs, commuting conversions permit an
induction on the active type to succeed.

Neither of our classical normalization proofs rely on a reduction relation
with commuting conversions: ordinary β reductions suffice. One can ex-
plain the lack of commuting conversions in two ways. First, although our
logic includes sum types A+B, our equivalent of a case analysis, copairing
[k1, k2], does not introduce a closed scope. Since the need for commuting

1Also called “permutative conversions” or “permutation conversions”.

15



conversions arises from the “parasitic formula” [11] introduced by closed-
scope eliminations, and we have no equivalent of closed-scope eliminations,
our logic does not need commuting conversions.

Second, one can view proofs in JCL and JCLL as CPS-converted proofs
of intuitionistic proofs—control flow is made explicit and all complex sub-
terms are named. As observed by de Groote [6], CPS conversion identifies
terms that are commuting convertible. In JCL and JCLL, the translations
of commuting convertible terms turn out to be β-convertible. Intuitionistic
linear logic provides a convenient example which has the pleasing property
that the conversion does not affect the size of the terms:

let 〈〈a:A, b:B〉〉 = (let 〈〈c:C, d:D〉〉 =M in N) in P : E

−→cc let 〈〈c:C, d:D〉〉 =M in let 〈〈a:A, b:B〉〉 = N in P : E

(where c, d < FV(P))

These translate to the classical terms

u:E. (〈〈a:A, b:B〉〉.u / P) / (v:A ⊗ B. (〈〈c:C, d:D〉〉. v / N) /M)

−→cc u:E. (〈〈c:C, d:D〉〉.u / (v:A ⊗ B. (〈〈a:A, b:B〉〉.v / P) / N) /M

(where c, d < FV(P))

which both β-reduce to the term

u:E. (〈〈c:C, d:D〉〉. (〈〈a:A, b:B〉〉.u / P) / N) /M.

6 Related work

The computational interpretation of classical logic in terms of a λ-calculus
enriched with control operators has been discovered, re-discovered, and
explored by many over the years. Filinski’s symmetric λ-calculus [8] was
the first judgemental presentation of classical natural deduction, in the
context of categorical duality. Griffin [12], Girard [10], and Murthy [17, 16]
all did seminal work exploring the connections between classical logic and
control effects in programming languages. Parigot [20] later presented a
natural deduction for classical logic, relying not on the judgements A true
and A false as we do, but rather on a notion of multiple conclusions similar
to the classical sequent calculus.

Wadler’s dual calculus [24] is most closely related to ours, with its
symmetric character inspired by Curien and Herbelin [2]; in its most recent
presentation [25], the structural rules of weakening and contraction are
admissible, so its proof terms are essentially a notational variant of our own.
The present work focuses only on β-reductions, though, without treating
Wadler’s η, ς, and ν expansions. The dualized judgemental interpretation
in terms of truth and falsehood, due to Nanevski [18], is novel, as far as we
are aware.

Our proof technique is similar to Pfenning’s structural cut-elimination
proofs [21, 22], adapted to the natural deduction setting. Its discovery
parallels that of hereditary substitutions [26, 19], a technique now used

16



primarily in specifying logical frameworks: both can be seen as taking nor-
malization proof that proceeds by translation through the sequent calculus
and turning it into a proof that proceeds entirely in the natural deduction
calculus.

There is no shortage of recent work on normalization for classical cal-
culi. For example, de Groote [5] and David [4] exhibit strong normalization
proofs for λµ-like calculi. Wadler [24] conjectured without proof that his
call-by-value and call-by-name calculi were strongly normalizing in the
absence of expansions. Recently, Dougherty, et al. [7] published a proof of
strong normalization for the non-confluent (neither call-by-value nor call-
by-name) version of Wadler’s calculus using a logical relations argument.
Our proof differs from theirs first by demonstrating only weak normaliza-
tion and second by relying solely on the syntactic method of structural
induction.

7 Conclusions

We have presented a judgemental natural deduction system for classical
logic, characterized its normal forms, and proven by structural induction
that every valid proof term has a normal form. Furthermore, we have for-
malized our proof in the Twelf logical framework so that it may be verified
mechanically. We have also presented a judgemental natural deduction for
classical linear logic and demonstrated how our normalization proof adapts
to the linear case.

More generally speaking, in demonstrating our result, we have also
shown that a consistency proof for a logic given in natural deduction style
need not step outside the system, either by clunkily translating to another
system or by giving a complicated semantic model for the system. A simple
syntactic lexicographic induction suffices to show normalization.

References

[1] Bor-Yuh Evan Chang, Kaustuv Chaudhuri, and Frank Pfenning. A
judgmental analysis of linear logic. Technical Report CMU-CS-03-131,
Carnegie Mellon University, 2003.

[2] Pierre-Louis Curien and Hugo Herbelin. The duality of computation.
In Proceedings of the fifth ACM SIGPLAN International Conference on
Functional Programming (ICFP’00), pages 233–243, New York, NY, USA,
2000. ACM Press.

[3] René David. Normalization without reducibility. Annals of Pure and
Applied Logic, 107:121–130, 2001.

[4] René David and Karim Nour. A short proof of the strong normalization
of classical natural deduction with disjunction. Journal of Symbolic
Logic, 68(4):1277–1288, December 2003.

[5] Philippe de Groote. Strong normalization of classical natural deduc-
tion with disjunction. In Samson Abramsky, editor, Fifth International

17



Conference on Typed Lambda Calculi and Applications (TLCA’01), volume
2044 of Lecture Notes in Computer Science, pages 182–196. Springer, 2001.

[6] Philippe de Groote. On the strong normalisation of intuitionistic nat-
ural deduction with permutation-conversions. Information and Com-
putation, 178(2):441–464, 2002.

[7] Daniel J. Dougherty, Silvia Ghilezan, Silvia Likavec, and Pierre Les-
canne. Strong normalization of the dual classical sequent calculus. In
12th International Conference on Logic for Programming, Artificial Intelli-
gence and Reasoning (LPAR’05), December 2005.

[8] Andrzej Filinski. Declarative continuations and categorical duality.
Master’s thesis, University of Copenhagen, Copenhagen, Denmark,
August 1989. (DIKU Report 89/11.).

[9] Gerhard Gentzen. Investigations into logical deduction. In M. E.
Szabo, editor, The Collected Papers of Gerhard Gentzen. North-Holland,
1969.

[10] Jean-Yves Girard. A new constructive logic: classical logic. Mathemat-
ical Structures in Computer Science, 1(3):255–296, 1991.

[11] Jean-Yves Girard, Paul Taylor, and Yves Lafont. Proofs and Types. Cam-
bridge Tracts in Computer Science. Cambridge University Press, Cam-
bridge, 1989.

[12] Timothy G. Griffin. A formulae-as-types notion of control. In
17th Annual ACM Symposium on Principles of Programming Languages
(POPL’90), San Francisco, January 1990. ACM Press.

[13] Felix Joachimski and Ralph Matthes. Short proofs of normalization.
Archive of Mathematical Logic, 42(1):59–87, 2003.

[14] Per Martin-Löf. On the meanings of the logical constants and the
justifications of the logical laws. Nordic Journal of Philosophical Logic,
1(1):11–60, 1996.

[15] Tom Murphy, VII, Karl Crary, and Robert Harper. Distributed con-
trol flow with classical modal logic. In Luke Ong, editor, Computer
Science Logic, 19th International Workshop (CSL 2005), Lecture Notes in
Computer Science. Springer, August 2005.

[16] Chetan R. Murthy. Classical proofs as programs: How, what, and why.
In J. Paul Myers Jr. and Michael J. O’Donnell, editors, Constructivity
in Computer Science, volume 613 of Lecture Notes in Computer Science,
pages 71–88. Springer, 1991.

[17] Chetan R. Murthy. An evaluation semantics for classical proofs. In 6th
IEEE Symposium on Logic in Computer Science (LICS’91), pages 96–109,
1991.

[18] Aleksandar Nanevski. Judgemental reconstruction of classical logic.
Personal communication, 2004.

[19] Aleksandar Nanevski, Frank Pfenning, and Brigitte Pientka. Contex-
tual modal type theory. Under consideration for publication in the ACM
Transactions on Computational Logic, September 2005.

18



[20] Michel Parigot. λµ-calculus: An algorithmic interpretation of classi-
cal natural deduction. In Proceedings of the International Conference on
Logic Programming and Automated Reasoning (LPAR’92), pages 190–201,
London, UK, 1992. Springer-Verlag.

[21] Frank Pfenning. Structural cut elimination in linear logic. Technical
Report CMU-CS-94-222, Carnegie Mellon University, 1994.

[22] Frank Pfenning. Structural cut elimination: I. intuitionistic and classi-
cal logic. Information and Computation, 157(1-2):84–141, 2000.

[23] Frank Pfenning and Rowan Davies. A judgmental reconstruction of
modal logic. Mathematical Structures in Computer Science, 11(4):511–540,
2001.

[24] Philip Wadler. Call-by-value is dual to call-by-name. In ICFP ’03: Pro-
ceedings of the Eighth ACM SIGPLAN International Conference on Func-
tional Programming, volume 38, pages 189–201, New York, NY, USA,
September 2003. ACM Press.

[25] Philip Wadler. Call-by-value is dual to call-by-name - reloaded. In
Jürgen Giesl, editor, RTA, volume 3467 of Lecture Notes in Computer
Science, pages 185–203. Springer, 2005.

[26] Kevin Watkins, Iliano Cervesato, Frank Pfenning, and David Walker.
A concurrent logical framework I: Judgements and properties. Techni-
cal Report CMU-CS-02-101, Carnegie Mellon University, March 2002.
Revised May 2003.

19


